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Question: Consider two-dimensional łow past a
surface-piercing ship. At low (draft-based) Froude
numbers, is it possible to design the hull in such a
way as to minimize or entirely eliminate the waves pro-
duced by the ship?

Ș In Search for a Waveless Ship
(ȘȠȞȗs-ȘȠȠȗs)

Our story begins in ȘȠȝȟ [Ș], when naval architect T.F.
Ogilvie noticed several peculiarities with asymptotic
predictions of ideal two-dimensional slow łows over
an obstruction; this describes, for example, łows over
a bumpy ocean łoor or over a step in a channel.

First, Ogilvie remarked that the approximations
predicted a waveless free surface, but despite the speed
of the stream being small, one would still expect waves
to form downstream of the obstruction. Why had the
asymptotics failed in capturing such waves?

Second, he noted that previous researchers had de-
rived asymptotic expansions in which the asymptotic
expansions seem to ‘re-order’ as the speed of the stream
tends to zero. So for example, at moderate speeds,
a single term in the asymptotic expansion might ap-
pear to be an adequate approximation. But for lower
speeds, one would need to include a second term to
achieve the desired accuracy. For still lower speeds,
the third-order terms would become important. And
so on.

Today, it is now known that at low Froude num-
bers, the waves are in fact exponentially small and thus
beyond all orders of regular asymptotics; their formation
is a consequence of the divergence of the asymptotic
series and the associated Stokes Phenomenon [ș].

Ļis underlying subtlety has been painfully prob-
lematic in regards to previous asymptotic and numeri-
cal treatments of the nonlinear ship-wave problem. In
[Ț], Dagan and Tulin showed that the analysis near
a three-dimensional ship can be reduced to studying
the two-dimensional ideal łow problem where the
ship is modeled as a semi-inŀnite body with constant
draft. Ļis fully nonlinear free-surface problem was
ŀrst computed by Vanden-Broeck and Tuck [ț], and
on the basis of numerical evidence, they conjectured
that ship hulls with a single front face would always
generate waves (see Figure Ș).
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FŕœšŞő Ș: Ļe Low-Speed Paradox addresses the fact that that
asymptotic expansions in powers of the Froude number fail to cap-
ture waves present on the free surface in potential łow problems.
In this ŀgure, the asymptotic (waveless) expansion of stern łow is
compared to the numerical solution of the problem. Ļe key idea is
that a Stokes line emerges from the corner-singularity, across which
an exponentially small wave turns on.

Moreover, the earlier experimental work of Baba
[Ȝ] had indicated that a bulbous bow can eliminate,
or at least reduce the splash at the bow of a ship¹.
Ļis prompted the discovery of seemingly waveless
ships with bulbous proŀles, ŀrst by Tuck and Vanden-
Broeck [ȝ] and later conŀrmed by Madurasinghe
[Ȟ]—but again, only numerically so. Unfortunately,
these results were later refuted by the more compre-
hensive numerical study of Farrow and Tuck [ȟ]; there,
they wrote that

Ļe free surface would at ŀrst sight appear
to be waveless, but on closer examination of
the numerical data, there are very small waves
present.

Clearly, these are questions which cannot be easily
answered using simple numerics. Indeed in [Ƞ], Tulin
mentions two open questions:

Ļe fundamental questions of whether such
rising potential free-surface łows before bluff
bodies exist [...] still remain open,

and
Is it demonstrable [...] that continuous solu-
tions will not exist in the limit of vanishing
speed? Does this have anything to do with the
inability of Tuck and his colleagues [...] to ŀnd
a continuous solution in the two-dimensional

* trinh@maths.ox.ac.uk
¹In potential łow, a waveless solution past the stern (rear) of a ship is equivalent to a splashless solution at the bow (front) of a ship.
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bow wave case? Do nonbreaking łows exist at
all for surface-piercing ship forms of arbitrary
form and thickness, at any speed?

However, with the recent development of techniques
in exponential asymptotics (see for example [Șȗ] and
[ȘȘ]), many of these issues can be resolved.

ș Mathematical Formulation
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FŕœšŞő ș: Ļe physical (x, y) and potential (ϕ, ψ) planes

Consider steady, two-dimensional, incompressible,
inviscid, and irrotational łow past a semi-inŀnite body
consisting of a łat bottom and a face with slope σπ
to the horizontal. Ļe non-dimensionalized problem
can be reposed as a problem in the potential plane (See
Figure ș),

log q = log q0 +
1
π
−
∫ ∞

0

θ(φ)
φ − ϕ

dϕ (Ș)

ϵq2 dq

dϕ
= − sin θ, (ș)

where ϵ is related to the square of the Froude draft
number, ∇ϕ is the non-dimensionalized łuid veloc-
ity, q = q(ϕ) is the speed of the łow, θ = θ(ϕ) is the
angle the streamlines make with the x-axis, and

q0 =
(

ϕ

ϕ + 1

)σ

(Ț)

is the leading-order (ϵ = 0) solution. Here, ϕ = 0 is
chosen to be the stagnation point and ϕ = −1 to be
the corner. Now solving the stern problem is equiv-
alent to solving the above equations for q and θ for
ϕ ≥ 0 (the free-surface).

Ļe key is that we will be interested in studying the
analytic continuation of the free-surface and thus allow-
ing ϕ+i0 7→ w, q(ϕ, 0) 7→ q(w), and θ(ϕ, 0) 7→ θ(w)
to be elements of a complex variable. Analytically con-
tinuing Equations (Ș) and (ș) gives

log q ∓ iθ = log q0 +
1
π

∫ ∞

0

θ(w′)
w′ − w

dw′ (ț)

ϵq2 dq

dw
= − sin θ, (Ȝ)

the ∓ signs corresponding to analytic continuation
into the upper and lower-half planes, respectively.

Ț Ļe Simpliŀed Nonlinear Problem
Although the full problem (ț)-(Ȝ) is tractible within
our methodology, for reasons of brevity we will present
a simpler problem that nevertheless illustrates the key
ideas.

It is the case that when the exponentially small
terms are sought from Equations (ț), the integral term
serves to only change the amplitude coefficient of the
downstream waves by a non-zero, O(1) amount. Ļat
is, the salient features of the problem are still retained
when we use log q ∓ iθ = log q0 instead of Equation
(ț). Without loss of generality, we will choose to an-
alytically continue into the upper-half plane and sub-
stituting this simpliŀcation into Equation (ș) gives

ϵq0q
3 dq

dw
− i

2
(
q2 − q2

0

)
= 0. (ȝ)

Now, why is it that the integral matters so little?
As we shall see, the determination of the waves essen-
tially depends on an analysis near the singularities in
the analytic continuation of the free surface. However,
the boundary integral is evaluated along the free sur-
face (ϕ ≥ 0), away from the singularities. Ļus for the
full problem (ț)-(Ȝ), the integral plays no actual role
for much of the analysis.

It can be shown that the question of existence of
waveless ships is equivalent to solving the simpliŀed
problem in Equation (ȝ), even though the quantitative
results between the two problems are slightly different.

ț Applying Exponential Asymptotics
We present the key ideas. First begin as usual by cal-
culating the regular asymptotic expansion of Equation
(ȝ) in the limit ϵ → 0, letting

q =
∞∑

n=0

ϵnqn. (Ȟ)

Ļe leading order solution q0(w) is the rigid-body łow
of Equation (Ț), while the O(ϵ) expression gives

q1 = −iq3
0

dq0

dw
(ȟ)

and at O(ϵn) for n ≥ 2,

3q4
0

dqn−1

dw
+ 3q3

0qn−1
dq0

dw
+ 3q3

0

dqn−2

dw
+ . . .

− i
(
q0qn + q1qn−1 + . . .

)
= 0. (Ƞ)

Ļe crucial observation is that there exists a singu-
larity in the analytic continuation of q0 at w = −1,
the corner of the stern. Ļis use of ill-deŀned approx-
imations in order to represent perfectly well-deŀned
phenomena is one of the caveats of asymptotics, but



one would feverishly hope that a singularity far from
the region of interest (the free-surface) has little effect
on the approximation!

Unfortunately, this is not the case. We can see
from Equation (Ƞ) that at each order, qn is partially de-
termined by differentiating qn−1 once; thus each addi-
tional order adds to the power of the singularity in q0.
As n → ∞, the analytically continued asymptotic ex-
pansion (Ȟ) will exhibit factorial over power divergence
in the form

qn ∼ Q(w)Γ(n + γ)
[χ(w)]n+γ

, as n → ∞ (Șȗ)

where γ is a constant, and Q(w) and χ(w) are func-
tions to be determined. Ļus, the unsettling growth of
the factorial is expounded by the fact that the power of
the singularity, χ(−1) grows at each subsequent order.
Ļe late terms are therefore entirely dominated by the
singularity at the corner.

Now, an asymptotic analysis in the limit n → ∞
using the above ansatz reveals

χ(w) =
∫ w

−1

−i

[q0(s)]3
ds (ȘȘ)

and

Q(w) =
ΩeiΦ

2(1 + 3σ)γ [q0(w)]5
, (Șș)

where Ω and Φ are constants. Ļe determination of γ,
Ω, Φ, and in fact, the Stokes line smoothing in the next
section will require an analysis near the singularity.

First, since by Equation (Ț), q0 ∼ c(w + 1)−σ

where c is constant, we must require—by comparison
of powers in the components of Equation (Șȗ)—that
γ = 6σ/(1 + 3σ). Second, in order to determine the
constant Ω, we need to re-scale near the singularity,
express the leading-order inner solution as a power se-
ries (in inner coordinates) and match with the outer
solution. In the end, however, Ω is determined by the
numerical solution to a nonlinear reccurence relation.
Ļe values of Ω for various values of σ are shown in
Figure Ț.

� ��� ��� ��� ��� �

�

����

���

����

���

����

���

����

���

����

σ

Ω

FŕœšŞő Ț: Notice that Λ ̸= 0 for all one-cornered ships. Ļis guar-
antees the non-existence of a waveless ship.

Ȝ Smoothing the Stokes Line

Ļe underlying divergence of the asymptotic expan-
sions will cause the Stokes Phenomenon to occur: as
the complexiŀed asymptotic solution crosses a criti-
cal line (the Stokes Line), a small exponential switches
on. When Stokes ŀrst studied this phenomenon in the
context of the Airy Equation, he wondrously described
the exponential as seeming to emerge from behind a
mist.

In order to identify the exponentially small waves,
we optimally truncate the asymptotic series at n = N
so that

q =
N∑

n=0

ϵnqn + RN . (ȘȚ)

At the optimal truncation point, the remain-
der RN is exponentially small (rather than only al-
gebraically small) and can be written as RN (z) =
S(z)Qe−χ/ϵ, where we expect S(z) to smoothly vary
from zero to a constant across the Stokes Line. As
shown by Dingle [Șș], Stokes Lines can be expected
wherever χ(w) is real and positive.

Ļe procedure then is to re-scale near the critical
line and examine the jump in the exponentially small
remainder as the Stokes Line is crossed. Ļe jump in
the remainder is shown to be

[
RN

]
∼ 2πQ(z)

ϵγ
exp

[
−χ

ϵ

]
, (Șț)

and thus, after some work, the amplitude of the expo-
nentially small waves is revealed to be

qexp ∼
Ωπ exp

[−3πσ
ϵ

]
ϵγ(1 + 3σ)γq5

0

exp
[
i
ℑ(χ)

ϵ
+ iΦ

]
(ȘȜ)
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FŕœšŞő ț: Contour plot for |χ(w)|. Ļe thick black line is the
Stokes Line (compare with Fig. Ș). Near the singularity (w = −1),
χ is small and thus the resultant exponential is O(1). As we travel
along the Stokes line towards the free-surface, ℜ[χ] grows until it is
indeed exponentially small on the free-surface.



ȝ Numerical Comparisons

Although at ŀrst sight, Equation (ȝ) appears to be a
relatively simple ŀrst-order differential equation, care
must be taken in order to ensure that the solution is
properly resolved near the stagnation point w = 0.
To do this, we (Ș) apply the coordinate transforma-
tion s = wσ, and (ș) apply the boundary condition at
w = 0 as q(L) = 0, and verify that the solutions are
numerically convergent as L → 0.

In Figure Ȝ, we plot the numerical amplitudes (of
either the real or complex parts of q) over a range of
Froude numbers and for a range of angled sterns. Ļe
agreement between analytical prediction and numer-
ical computation is remarkably good, even for a rela-
tively large Froude number.

Numerical computation of the full nonlinear prob-
lem in Equations (ț)-(Ȝ) is more difficult and possesses
many subtleties. However, the agreement between an-
alytical and numerical results are still very good.

Ȟ Discussion

So in the end, do waveless ships exist?
For the one-cornered ship, the answer is quite

clearly ‘No!’ Ļe Stokes line smoothing necessitates the
existence of a non-zero wave (ȘȜ) on the free-surface
(since the pre-factor Ω is non-zero for all values of
0 < σ < 1). For stern łows, these waves must prop-
agate downstream, while for bow łows, these waves
grow to be of inŀnite amplitude near the hull². Ļus
for the one-cornered hull, neither waveless sterns nor
splashless bows are possible.

And for more general ships? Perhaps. Our the-
ory has been successively implemented for more gen-
eral piecewise-linear hull forms; here, analytical cri-
teria can be provided for the construction of waveless
ships. With several corners, it may be possible (though
difficult) to produce total phase cancellation. Work on
the bulbous proŀles considered by Tuck and others is
ongoing.
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FŕœšŞő Ȝ: Asymptotic (line) and numerical (circle) amplitudes. Ļe straight-line ŀt on the semi-log
scale indicates the exponentially small nature of the stern waves.

²In particular, this implies that for bow łows, the assumption that the łow attaches to the hull at a stagnation point is false. In [ț],
Vanden-Broeck and Tuck conjecture that the correct assumption in the low-Froude limit must include an overturning splash.


	In Search for a Waveless Ship (1970s-1990s)
	Mathematical Formulation
	The Simplified Nonlinear Problem
	Applying Exponential Asymptotics
	Smoothing the Stokes Line
	Numerical Comparisons
	Discussion

